Dark matter direct detection with the XENONnT experiment

Volta Giovanni – University of Zurich On behalf of the XENON collaboration August 30th, 2022

14th Conference on the Intersection of Particle and Nuclear Physics - CIPANP 2022

The XENON collaboration

Dark matter direct detection experiment

- Laboratori Nazionali del Gran Sasso (LNGS)
- Dual phase xenon time projection chamber
- 170 scientists, 27 institutions, 12 countries

The XENON collaboration

Collaboration Meeting - Torino, July 2022

Detection principle

Combination of S1 and S2 signals allows for:

- 3D Position reconstruction
- Energy reconstruction
- ER/NR discrimination

The XENONnT experiment

The XENONnT detectors

Three nested detectors:

- Cherenkov muon veto (MV) •
- Neutron veto (NV)
- Dual phase time projection chamber (TPC)

Service building facility provides the systems for the auxiliary components (distillation, recovery, cryogenics and purification, DAQ and SC, ...)

Main requirements:

- Low electronegative impurities concentration
- ²²²Rn mitigation (target 1 µBq/kg)
- High neutron veto tagging efficiency

The XENONnT TPC

- 1.5 m × 1.3 m
- High reflectivity PTFE panels
- 494 3" R11410-21 PMTs
- 8.5 t of liquid xenon of which 5.9 t instrumented
- 5 electrodes
- Two sets of field shaping rings

The purification system

- Xenon purified from electronegative impurities, e.g. O₂
- Gas purification system, partially inherited from XENON1T
- Novel liquid-phase purification system implemented
- Electron lifetime improved from \sim 650 µs in XENON1T to > 10 ms

05

Xenon distillation

oration, PTEP Vol 2022, Issue 5, May 2022 Dration, Eur. Phys. J. C 77, 358(2017)

M Murra et al. arXiv:2205 11492

- Background mitigation through distillation of the xenon
- Kr distillation performed before the science run data acquisition
- ^{nat}Kr concentration achieved: (56 ±36) ppq, ~0.66 ppt in XENON1T
- Online Radon distillation, x10 reduction with respect to XENON1T(~12 µBq/kg)
- Measured ²²²Rn concentration: ~1.7 μ Bq/kg
- Recent improvements in the Radon column helped to get to XENONnT goal of 1 $\mu\text{Bq/kg}$

Where are we now ?

XENON Science Run 0

- Spring 2020: installation of the TPC underground at LNGS
- Summer/Fall 2020: nVeto installation, TPC and WT filling
- Winter/Spring 2021: detectors commissioning
- From May to December of 2021: XENONnT science run 0

- \rightarrow 97.1 days SR0 search data
- \rightarrow ~23 V/cm drift field
- \rightarrow ~2.9 kV/cm extraction field
- \rightarrow ²²²Rn concentration: ~1.7 µBq/kg
- \rightarrow e_{lifetime} > 10 ms
- \rightarrow 477/494 working PMTs
- ightarrow Localised high single electron emission
- \rightarrow ER and NR blinded analysis

TPC response characterization

- ^{83m}Kr calibration every 14 days
- $T_{1/2}$ (~ 1.83 h) big enough to distribute uniformly in the detector
- Essential calibration source for understanding S1 and S2 collection efficiency as a function of the position
- Useful to validate the simulation framework, e.g. photon propagation in the xenon

TPC response characterization

- ^{83m}Kr calibration every 14 days
- $T_{1/2}$ (~ 1.83 h) big enough to distribute uniformly in the detector
- Essential calibration source for understanding S1 and S2 collection efficiency as a function of the position
- Useful to validate the simulation framework, e.g. photon propagation in the xenon

ER response characterization

- ER calibrated at low energy with ³⁷Ar and ²²⁰Rn, homogeneously distributed in the detector volume
- ³⁷Ar gives 2.82 keV peak used for understanding low energy response and resolution near the energy threshold
- ²¹²Pb, radon daughter, gives a reasonably flat β spectrum necessary to develop data quality selections and study their acceptances, as well as validate the energy threshold

NR response characterization

- Neutrons provided by AmBe source, deployed in the calibration tubes around the TPC
- 4.4 MeV gamma emitted 50% of the time together with AmBe neutron
- Events in coincidence have been used to validate nVeto performances as well as select pure NR events

Energy calibration

- Based on ³⁷Ar, ^{83m}Kr, ^{129m}Xe, and ^{131m}Xe
- Reconstruction has not been optimized for high-energy events (~ MeV)
- Observed 1-2% bias on reconstructed energy, included as systematic uncertainty in the model

$$E = 13.7 \text{ eV} \left(\frac{cS1}{g_1} + \frac{cS2}{g_2}\right)$$

Detector response stability

- Detector performance have been monitored through all the SR0
- PMTs single PE amplification stable within 3%, averaged single PE acceptance during SR0 around 91%
- Alphas from ²²²Rn and gammas from materials^[1] used for monitoring light and charge yields. Fluctuations within 1% and 1.9% respectively
 ^{41.5 keV CE [^{83m}Kr]}
 ^{41.5 keV CE [^{83m}Kr]}
 ^{41.5 keV CE [^{83m}Kr]}

Summary and outlook

XENON collaboration, arXiv:2207.11330

- 222 Radon activity concentration (1.72 ± 0.03) µBq/kg achieved
- Excellent purity of the LXe target: > 10 ms electron lifetime
- Electronic recoil response validated July 2022 the ER band has been unblinded
- 1.16 tonne years exposure, ~×2 XENON1T ER search exposure
- (16.1 ± 0.3) events/(t × yr × keV) in [1; 30] keV energy range, ~×0,2 compared to XENON1T Check out Jingqiang Ye's talk @ 14:40 (30/08) for the unblinding results
- The validation of nuclear recoil response is ongoing unblinding foreseen soon!

Thank you for the attention!

Volta Giovanni – University of Zurich August 30th, 2022

14th Conference on the Intersection of Particle and Nuclear Physics - CIPANP 2022

Gas purification system

Liquid purification system

Kr/Ar distillation column

Radon distillation column

Energy reconstruction