



# Calibrating XENONnT and its novel water Cherenkov neutron-veto using tagged neutrons

Daniel Wenz on behalf of the XENON collaboration dwenz@uni-mainz.de



# XENONnT's neutron-veto

- Water Cherenkov neutron-veto surrounding TPC within water Cherenkov muon-veto
  - 120 8" PMTs
  - Surfaces covered with ePTFE
  - Hydrogen neutron-capture
    - Only a few photons are emitted (about 260 for 2.2 MeV)
    - Average neutron-capture time ~200 µs
- Requirements of the nVETO:
  - High light collection efficiency:
  - Large PMTs with high quantum efficiency
  - High reflectivity ~99 %
  - High water transparency
- Gd-loading at a later stage
  - Reduces capture time to ~20 µs
  - Increases deposited energy to ~8 MeV



Daniel Wenz IDM2022

## **XENONnT NR calibration:**

- Use tagged neutrons from AmBe
  - AmBe emits in about 50 % (tbd) of all cases a coincident 4.4 MeV gamma
  - Select 4.4 MeV gammas in the neutron-veto and build a coincidence between S1 and neutron-veto



## XENONnT NR calibration:

- Use tagged neutrons from AmBe
  - AmBe emits in about 50 % (tbd) of all cases a coincident 4.4 MeV gamma
  - Select 4.4 MeV gammas in the neutron-veto and build a coincidence between S1 and neutron-veto
- Tight coincidence window of 408 ns
  - Strong reduction of ER and accidental events background. Fraction

 $10^{-1}$ 

Rate [cps/ns]

 $10^{-5}$ 

-500

-250

250

0

500



### XENONnT NR calibration:

- Strong reduction of accidental coincidences and ER background
- Additional data quality cuts:
  - Cuts against multi-scatter
  - Cuts against wrong S1/S2 pairing
- NR single scatter events to calibrate neutron-veto tagging efficiency



### Neutron-veto tagging efficiency:

- Use NR single scatter events as a starting point to calibrate tagging efficiency
- Look for coincidence between TPC and neutron-veto in a large coincidence window
- Define ROI of capture signals and side band background region

 $10^{4}$ 

 $10^{3}$ 

 $10^{1}$ 

Residuals  $\begin{bmatrix} \sigma \end{bmatrix}$ 

-1000

#Entries per bin

Bkg.

region



20

25

### Neutron-veto tagging efficiency:

- Subtraction of bkg region from ROI
- Estimate tagging efficiency for given thresholds:



@ 5-fold coincidence, 5 pe threshold and 600 µs window



10

Area threshold [pe]

15

XENON

Preliminary

0.1

0.0

0

Daniel Wenz IDM2022

### 8

# Neutron-veto tagging efficiency:

- Subtraction of bkg region from ROI
- Estimate tagging efficiency for given thresholds:



@ 5-fold coincidence, 5 pe threshold and 600 µs window

• Can also estimate neutron detection efficiency:

"Number of neutrons detected | selection" "Number of 4.4 MeV gamma detected in the TPC"



 $(80.2 \pm 1.3)\%$  <sup>@ 5-fold coincidence, 5 pe</sup> threshold and 600 µs window

To our knowledge highest detection efficiency ever measured in a water Cherenkov detector.



# Conclusion and Outlook:

- Tagged neutrons excellent tool to calibrate NR and neutron-veto
- The XENONnT neutron-veto performs very well even as a pure-water Cherenkov detector.
- Next steps:
  - Study NR band without any S1 threshold
  - Use tagged neutrons to compute cS2-only instead of S2 only in calibrations
  - Use as NR tagged signals to study Migdal effect
  - Load neutron-veto with 0.2 %  $(Gd_2(SO_4)_3 \times 8(H_2O))$ 
    - 10 PMTs at 0.5 PE threshold, within 150  $\mu s$



E. Aprile *et al* JCAP11(2020)031



# Back-up slides:

### Neutron-veto detection efficiency:

- Detection efficiency:
  - Chance to detect a neutron in the nveto given the number of 4.4 MeV gammas detected in the TPC
- Same analysis strategy as for the neutrontagging efficiency:
- Estimated detection efficiency to be:

 $(80.2 \pm 1.3)\,\%$ 

@ 5-fold coincidence, 5 pethreshold and 600 µs window



To our knowledge highest detection efficiency ever measured in a water Cherenkov detector.



# <u>Why $(Gd_2(SO_4)_3 \times 8(H_2O))$ </u>?:

- 0.2 % Gd-concentration (by weights)
  - 3.4 tons of Gadolinium-sulfate-octahydrate (Gd<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> x 8(H<sub>2</sub>O)) in 740 t water
  - Neutron capture efficiency of > 90 %

|                            | H-capture: | Gd-capture: |
|----------------------------|------------|-------------|
| Capture-<br>Crosssection σ | 0.333 b    | ~49 kb      |
| De-excitation energy       | 2.2 MeV    | ~8 MeV      |

- Simulation of tagging efficiency and background :
  - > 10 PMTs at 0.5 PE threshold, within 150  $\mu$ s



E. Aprile *et al* JCAP11(2020)031





### NR band applying all cuts:



#### Neutron-veto gamma-peak:

- A region between -1 µs and 30 µs was excluded from the time distribution fit of the neutron-veto tagging
  - Contamination from the 4.4 MeV gamma in the neutron-veto
  - Higher chance to find accidental events due to PMT afterpulses



## Spatial distribution AmBe calibration:

- AmBe data taking at different positions around the cryostat
- Localization of the calibration data due to some technical issues and issues with the DAQ during calibration.
  - Improvement is expected during SR1



Spatial distribution of the AmBe NR calibration events. Shaded events are outside of the fiducial volume used during calibration.

Daniel Wenz IDM2022